Posted on

MOTORES E COMANDOS ELÉTRICOS

Eletromagnetismo
Sempre que uma corrente elétrica percorre um condutor, um campo magnético é gerado ao redor do mesmo. Os princípios do magnetismo são uma parte importante da eletricidade, pois além dos
motores, eletroímãs são utilizados em vários componentes elétricos.

Motor Elétrico
É uma máquina que converte a energia elétrica e energia mecânica (movimento rotativo), possui
construção simples e custo reduzido, além de ser muito versátil e não poluente. O motor elétrico
tornou-se um dos mais notórios inventos do homem ao longo de seu desenvolvimento tecnológico. A
finalidade básica dos motores é o acionamento de máquinas, equipamentos mecânicos,
eletrodomésticos, entre outros, não menos importantes. Seu princípio de funcionamento, construção
e métodos de partida, serão conhecidos ao longo desta disciplina.

Métodos de Partida

Os motores são comandados através de chaves de partida, sendo que as mais empregadas são:
Partida Direta/ Reversora;
Acionamento de pequenos motores;
Partida Estrela Triângulo;
Acionamento de grandes motores sem carga;
Partida Compensadora;
Acionamento de grandes motores com carga;
Partida com Soft-Starter;
Acionamento de grandes motores com carga;
Partida com Inversor de Freqüência.
Acionamento de pequenos e grandes motores;

Tipos de Circuitos

Todas as chaves de partida mencionadas anteriormente possuem um circuito principal e um circuito
de comando. O circuito principal ou de força com também é conhecido, é o responsável pela
alimentação do motor, ou seja, ele é o responsável pela conexão dos terminas/fios do motor a rede
elétrica. O circuito de comando, como o próprio nome diz é responsável por comandar o circuito de
força, determinando quando o motor será ligado ou desligado.

Componentes das Chaves de Partida

As chaves de partida são compostas pelos seguintes dispositivos:
Dispositivos de Proteção:
Fusível, Rele Térmico, Disjuntor Motor;
Dispositivos de Comando:
Botão, Contator, Temporizador;
Dispositivos de Sinalização:
Sinaleiro, Voltímetro, Amperímetro;

CIRCUITO DE POTENCIA:
CIRCUITO DE COMANDO:
ELETROMAGNETISMO

Cargas Positivas e Negativas

Os elétrons na faixa exterior de um átomo são deslocados facilmente pela aplicação de alguma força
externa. Os elétrons que são forçados para fora de suas órbitas podem resultar na falta de elétrons
no átomo de onde saem e em um excesso no átomo para onde vão. A falta dos elétrons cria uma
carga positiva porque há mais prótons do que elétrons e o excesso dos elétrons cria uma carga
negativa.

Atração e Repulsão

Em eletricidade, o velho ditado “os opostos se atraem” é verdadeiro. Todos os corpos carregados
eletricamente possuem um campo invisível ao seu redor. Quando dois corpos carregados com cargas
iguais são colocados juntos, seus campos elétricos trabalharam para repelí-los e quando dois corpos
carregados com cargas contrárias são colocados juntos, seus campos elétricos trabalharam para
atraí-los. O campo elétrico em torno de um corpo carregado é representado por linhas invisíveis de
força e estas linhas representam um campo elétrico invisível que causa a atração e a repulsão.

Magnetismo

Denominamos de magnetismo, as linhas invisíveis de força criadas pelos ímãs naturais e pelos
eletroímãs. Os três tipos mais comuns de imãs naturais são a ferradura, a barra e a agulha de
bússola. Os ímãs possuem duas características principais, atraem e se prendem ao ferro e se livres
para se moverem como a agulha da bússola, apontam para os pólos norte e sul.
Extraindo as linhas na maneira como as limalhas de ferro se arranjaram, teremos a seguinte imagem:
As linhas tracejadas indicam o trajeto das linhas do fluxo magnético. As linhas do campo existem
dentro e fora do ímã e formam sempre laços fechados. As linhas magnéticas do fluxo saem do pólo
norte e entram no pólo sul, retornando ao pólo norte através do ímã.

Interação entre dois ímãs

Quando dois ímãs são aproximados, o fluxo magnético em torno destes irá causar uma interação
entre os mesmos. Se os ímãs forem aproximados com os pólos contrários, os mesmos iram se atrair
e se forem com os pólos iguais iram se repelirem.

Eletroímã

Uma bobina de fio condutor, percorrida por uma corrente elétrica age como um ímã. Os laços
individuais da bobina agem como pequenos ímãs. Os campos individuais se somam formando o
campo principal. A força do campo pode ser aumentada adicionando mais voltas à bobina ou ainda,
se ainda se aumentarmos a corrente que circula pela mesma.

MOTORES ELÉTRICOS

Motor elétrico é a máquina destinada a transformar energia elétrica em energia mecânica. O motor de
indução é o mais usado de todos os tipos de motores, pois combina as vantagens da utilização de
energia elétrica, baixo custo, facilidade de transporte, limpeza e simplicidade de comando com sua
construção simples, custo reduzido, grande versatilidade de adaptação às cargas dos mais diversos
tipos e melhores rendimentos. Os tipos mais comuns de motores elétricos são:

Motores de Corrente Contínua

São motores de custo mais elevado e, além disso, precisam de uma fonte de corrente contínua, ou de
um dispositivo que converta a corrente alternada comum em contínua. Podem funcionar com
velocidade ajustável entre amplos limites e se prestam a controles de grande flexibilidade e precisão.
Por isso, seu uso é restrito a casos especiais em que estas exigências compensam o custo muito
mais alto da instalação.

Motores de Corrente Alternada

São os mais utilizados, porque a distribuição de energia elétrica é feita normalmente em corrente
alternada. Os principais tipos são:
Motor síncrono: Funciona com velocidade fixa, utilizado somente para grandes potências (devido ao
seu alto custo em tamanhos menores) ou quando se necessita de velocidade invariável.
Motor de indução: Funciona normalmente com velocidade constante, que varia ligeiramente com a
carga mecânica aplicada ao eixo. Devido a sua grande simplicidade, robustez e baixo custo é o motor
mais utilizado de todos, sendo adequado para quase todos os tipos de máquinas acionadas,
encontradas na prática. Atualmente é possível controlarmos a velocidade dos motores de indução
com o auxílio de inversores de freqüência.
COMPOSIÇÃO DE UM MOTOR:
Constituição do Motor de Indução

O motor assíncrono é constituído basicamente pelos seguintes elementos: um circuito magnético
estático, constituído por chapas ferromagnéticas empilhadas e isoladas entre si, ao qual se dá o
nome de estator; por bobinas localizadas em cavidades abertas no estator e alimentadas pela rede
de corrente alternada; por um rotor constituído por um núcleo ferromagnético, também laminado,
sobre o qual se encontra um enrolamento ou um conjunto de condutores paralelos, nos quais são
induzidas correntes provocadas pela corrente alternada das bobinas do estator.
O rotor é apoiado num veio, que por sua vez transmite à carga a energia mecânica produzida. O
entreferro (distância entre o rotor e o estator) é bastante reduzido, de forma a reduzir a corrente em
vazio e, portanto as perdas, mas também para aumentar o fator de potência em vazio.
Como exemplo apresentamos a “projeção” dos diversos elementos o motor assíncrono de rotor em
gaiola de esquilo.
Funcionamento de um Motor Assíncrono

A partir do momento que os enrolamentos localizados nas
cavidades do estator são sujeitos a uma corrente alternada,
gera-se um campo magnético no estator, consequentemente,
no rotor surge uma força eletromotriz induzida devido ao fluxo
magnético variável que atravessa o rotor. A f.e.m. induzida dá
origem a uma corrente induzida no rotor que tende a opor-se
à causa que lhe deu origem, criando assim um movimento
giratório no rotor.

Como podemos constatar o princípio de funcionamento do
motor de indução baseia-se em duas leis do
Eletromagnetismo, a Lei de Lenz e a Lei de Faraday.

Faraday: “Sempre que através da superfície abraçada por um circuito tiver lugar uma variação de
fluxo, gera-se nesse circuito uma força eletromotriz induzida. Se o circuito é fechado será percorrido
por uma corrente induzida”.
Lenz: “O sentido da corrente induzida é tal que esta pelas suas ações magnéticas tende sempre a
opor-se à causa que lhe deu origem”.

2 responses to “MOTORES E COMANDOS ELÉTRICOS

  1. Eletrica

    O que acontece se eu alimentar um motor de seis pontas na tensao 440v com o motor fechado em estrela?

  2. Anonymous

    A tensão de 440V é muito utilizada em fábricas, especialmente para o acionamento de motores trifásicos, já que se faz economia nos cabos, disjuntores, contatores e relés térmicos. Note bem que o consumo de energia permanece o mesmo. Veja porque:A potência instalada é de 125 kW alimentada em 440V:P= (Raiz de 3)xV x I, então I = P/1,73 x 440 = 165 A-> cabo: 95 mm²Se você usar a mesma carga em 220V:P= (Raiz de 3)xV x I, então I = P/1,73 x 220 = 328 A -> cabo 240 mm²Você tem aí provado que a economia de materiais com uma tensão 440V equivale à metade da utilizada em 220V com a mesma potência.A tensão de 440V também pode ser utilizada na iluminação e tomadas em 220V/127V desde que você use um ramal da linha trifáfica ligado a um auto-tranformador, que fornecerá o cabo neutro.A tensão entre cada fase(440V) e o neutro é de 254V, pois a tensão entre fase e neutro de qualquer alimentação é V(fase) /1,73. Neste caso teremos: 440/1,73 = 254 V.O ramal trifásico de 440V deve ser ligado então a um auto transformador, que fornecerá a tensão trifásica em 220V. Lembre-se que a tensão entre fase e neutro de 220V é: 220/1,73= 127V.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s